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Until half a century ago, associative learning played a fundamental
role in theories of perceptual appearance [Berkeley, G. (1709) An
Essay Towards a New Theory of Vision (Dublin), 1st Ed.]. But
starting in 1955 [Gibson, J. J. & Gibson, E. J. (1955) Psychol. Rev. 62,
32–41], most studies of perceptual learning have not been con-
cerned with association or appearance but rather with improve-
ments in discrimination ability. Here we describe a ‘‘cue recruit-
ment’’ experiment, which is a straightforward adaptation of
Pavlov’s classical conditioning experiment, that we used to mea-
sure changes in visual appearance caused by exposure to novel
pairings of signals in visual stimuli. Trainees viewed movies of a
rotating wire-frame (Necker) cube. This stimulus is perceptually
bistable. On training trials, depth cues (stereo and occlusion) were
added to force the perceived direction of rotation. Critically, an
additional signal was also added, contingent on rotation direction.
Stimuli on test trials contained the new signal but not the depth
cues. Over 45 min, two of the three new signals that we tested
acquired the ability to bias perceived rotation direction on their
own. Results were consistent across the eight trainees in each
experiment, and the new cue’s effectiveness was long lasting.
Whereas most adaptation aftereffects on appearance are opposite
in direction to the training stimuli, these effects were positive. An
individual new signal can be recruited by the visual system as a cue
for the construction of visual appearance. Cue recruitment exper-
iments may prove useful for reexamining of the role of experience
in perception.

classical conditioning � perceptual learning � bistable perception

A ‘‘visual percept’’ is the mental representation that one be-
comes consciously aware of when one’s eyes are open. It

specifies the sizes and locations of surfaces and objects, surface
properties such as color and visual texture, and the recognized
identities of objects (1, 2). To reliably construct percepts from visual
signals, the visual system must exploit the statistical relationships
between the signals it measures, which are caused by regularities in
the world. Percepts are computed automatically, as demonstrated
by visual illusions that persist even when one knows they are illusory
(3). Here we describe a simple test of the empiricists’ proposal that
the visual system actively monitors and refines its functions for
mapping signals from the world onto perceptual appearances,
consistent with tracking changes in the meanings of those signals
over time (3–10). In particular, we tested whether the visual system
detects and utilizes new signals as ‘‘cues’’ that it relies upon to build
percepts after exposure to novel correlations between input signals.

There is already considerable evidence that the rules that
map signals onto percepts can change with experience. For
example, it has been reported that experience can affect the
following: (i) whether a surface with low luminance is seen as
painted dark or merely in a shadow (11); (ii) the mapping
between moving 2D images and the 3D representations they
evoke (12, 13); (iii) the perceived distance of a U.S. coin,
depending on whether an image of fixed size depicts a dime or
half-dollar [with the dime’s image appearing closer because a
dime’s true size is smaller (14)]; and (iv) the disambiguation of
perceptually bistable images (such as might be seen as either

a dog or a chef), which can be made to depend on the spatial
position at which the images are presented (15). It is also well
established that, during development, visual experience is
necessary for the system to learn how to interpret orientation,
stereo, motion, and other visual cues (16).

It also seems to be the case that our perceptual systems make
remarkably few errors, and perception is in many ways nearly
optimal (17). Did evolution endow us with a mechanism to track
contingencies between signal measurements (7), so that new signals
might be used during perception? Brunswik (3) used the term
‘‘ecological validity’’ to describe a cue’s correlation with some
property of the world, and he argued that the visual system tracks
changes in validity, as would be needed to optimally resolve
ambiguities through probabilistic inference. Our experiments ad-
dress this issue.

We use the words ‘‘cue recruitment’’ to describe two things: (i)
an experimental design and (ii) a type of learning. This same
distinction must be made for other types of classical conditioning:
one must be careful to distinguish the conditions under which the
learning occurs from what (if anything) was learned. In a cue
recruitment experiment, a new signal is put into correlation with
existing cues during training, and the experimenter measures
whether the new signal comes to elicit the same perceptual response
that the existing cues elicit. If it does, we describe the learning as cue
recruitment by the visual (or other perceptual) system. As noted
earlier, we are concerned here specifically with perceptual appear-
ance not visually guided behavior in general.

Cue recruitment is a simple form of associative learning. Why
might one expect to see cue recruitment in perception? Because the
organism cannot know the true state of the world, it must rely
entirely on innate knowledge (6) and patterns of activity in its signal
measurements (4). A Bayesian system that learns about the envi-
ronment must therefore track correlations between signals (18). A
simple form of such learning is to recruit a new signal to elicit an
existing response (at some level within the nervous system) after
noting the temporal co-occurrence of activity caused by the signal
and activity that represents the response (9, 19). The contemporary
view is that learning by association is a method for acquiring
knowledge about the world (20), and in principle this learning could
include knowledge about how visually measured signals are related
to states of the world.

In a laboratory setting, an arbitrarily chosen visual signal can be
put into artificial correlation with cues that reliably evoke some
perceptual attribute (21). The perceptual attribute that we paired
with the new signal was direction of rotation for a 3D wire-frame
cube in a movie (Fig. 1 and Fig. 5, which is published as supporting
information on the PNAS web site). The movie supported per-
ceived rotation in either direction, but only one direction of rotation
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was typically seen on any given trial. Our measure of cue recruit-
ment was the percentage of trials on which the cube was seen to
rotate in the direction specified by the new cue.

Our experiments have three features that are methodologically
important for reasons that may not be immediately obvious. First,
the new signals we used were suprathreshold and easily perceived
in their own right, quite apart from any learned effects they had on
the targeted perceptual attribute (i.e., rotation direction). This high
salience of the novel signals ensured that changes in appearance
were not caused by improvement in the visual system’s ability to
extract the signal itself. Second, the targeted perceptual attribute
was also trivially easy to perceive, which was important in making
the instructions easy to follow, as we did not want trainees to search
for alternative strategies based on the appearance of some other
perceptual attribute (such as the new signal itself). A third impor-
tant feature of our experimental method was that the task required
judging appearance relative to an additional, randomized signal (a
dot that moved right or left). This indirect task prevented simple
response bias (i.e., an association between the new signal and a
particular button) from interfering with the trainees’ use of button
presses to report on appearance.

Methods
On training trials, preestablished depth cues (stereo and occlusion)
were added to the display to disambiguate the perceived rotation,
and critically, a new signal was also added. This new signal had one
of two values, (�) or (�), depending on the direction of rotation
indicated by the preestablished cues. Thus the new signal was
contingent on the direction of rotation, so if the system can learn
from experience (for example by using Bayes’ rule), then the new
signal should become a cue for direction of rotation. Every 11th trial
was a test trial, on which the preexisting cues were removed, leaving
only the new signal to disambiguate the percept.

Training Cues. The experimental manipulation was to expose train-
ees to novel correlations between previously unrelated signals and
the direction of 3D rotation of the cube. The three signals tested
were as follows: (i) top vs. bottom of screen position (POSN), (ii)
up vs. down of translational motion (TRANSL), and (iii) high-
pitched vs. low-pitched sound (SOUND). Movies 1–9, which are
published as supporting information on the PNAS web site, de-
scribe the stimuli in greater detail. To anticipate the results, reliable
changes in perception (in the predicted direction) were obtained for
POSN and TRANSL but not for SOUND.

Apparatus and Display. Red–green stereo anaglyph images (22)
were presented by rear-projecting from an LP350 DLP projector
(InFocus, Wilsonville, OR) onto 166 � 125-cm region of a
projection screen. The trainee was seated 200 cm away, with eye
level aligned to the center of the display area.

Stimuli, Task, and Procedure. The stimuli were 8.33-s animations
showing a wire-frame cube, covered with random dots, rotating in
depth around a vertical axis. A separate horizontally moving probe
dot was shown at the top or middle of the display, moving either left
or right. The cube was oriented in space so that one of its diagonals
was perpendicular to the axis of rotation. The cube was simulated
to have 28.9-cm edges (diagonal length, 50 cm), subtending 14° of
visual angle. The moving probe dot subtended 0.74°. The rate of
rotation of the cube was 0.754 rad�s for all three experiments.

There were two types of trials, training trials and test trials. On
test trials, orthographic projection was used to render the rotating
cube, and images were presented only to the right eye. Under these
conditions, structure-from-motion information is ambiguous, lead-
ing to a bistable percept of either left-handed or right-handed 3D
rotation. On training trials, two depth cues were added to disam-
biguate the direction of 3D rotation. First, disparities were added
to the binocular images, consistent with one of the two 3D
interpretations. Second, an opaque cylinder (10 cm by 122 cm) was
added to lie along the rotation axis of the cube, so it provided static
and dynamic occlusion cues to depth order.

All displays contained a 4-cm-wide fixation square (1.15°), po-
sitioned at the center of the screen for the POSN and TRANSL
experiments or 58 cm above the center for the SOUND experiment.
Trainees were instructed to fixate on the square. Eye position was
not monitored because the logic of the experiment does not require
that fixation was accurate.

The task was to judge whether the probe dot moved in the same
direction as the front or the back of the rotating cube and to press
2 or 8 on a keypad, respectively. This task ensured that the trainee’s
button presses were uncorrelated with the new signal over the
course of the session, to prevent motor response bias from con-
tributing to the measured effects. This task felt natural and was easy
to do.

Feedback (a visually presented smiling or frowning cartoon face)
was provided immediately after the trainee responded to indicate
whether the response was correct. On test trials, the feedback was
always positive, regardless of the response. On training trials, if the
response was incorrect, a delay of 6 s before the next trial was
imposed as a penalty. We instructed trainees that it was possible
that the direction of rotation could appear to flip in the middle of
a trial, and instructed them to indicate whether such a flip occurred
by first pressing 0, and then 2 or 8, according to their initial
impression. Based on this measure, spontaneous reversals appeared
to be rare, occurring on between 0% and 1.5% of trials. These trials
were excluded from analysis.

Sessions lasted 45–60 min, during which trainees responded to a
total of 440–470 trials. The trials were arranged in a repeating
sequence of 10 training trials followed by 1 test trial. Trials were
self-paced, with built-in breaks every 50 trials. The cue-rotation
pairing was counterbalanced across trainees, to control for the
(unlikely) possibility that trainees might have a preexisting bias to
perceive left- or right-handed rotation contingent on the trained
signal.

Trainees (Subjects). Trainees who performed multiple sessions did
so on consecutive days. All trainees were naive to the purposes of
the experiment and were paid for participating. Trainees gave
informed consent in accordance with a protocol approved by the
Institutional Review Board panel of the University of Pennsylvania.

See Supporting Methods, which is published as supporting
information on the PNAS web site, for additional methods.

Fig. 1. Experimental paradigm to study cue recruitment. Before training, an
ambiguous stimulus was equipotential, and a new signal had no effect. During
training, stereo and occlusion cues specified the direction of rotation on each
trial, and two values of the new signal (�) and (�) were presented in corre-
lation with the two directions of rotation. After training, the new signal
disambiguated the rotation [as shown for the (�) signal; the symmetric case
for the (�) signal is not shown]. LH, left-handed perceived rotation; RH,
right-handed perceived rotation. Typical probabilities for each of these per-
ceptual outcomes are shown in the boxes.
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Results
Fig. 2 shows the time course of learning during each session for all
three experiments (POSN, TRANSL, and SOUND). Data are
binned by trial number and averaged across trainees. In the POSN
and TRANSL experiments, learning increased during the session.
Individual data are too sparse to reliably distinguish between
gradual (incremental) vs. abrupt (step-like) changes (23) for indi-
vidual trainees within a single session. Learning from early sessions
prevented the acquisition of a reversed bias when the two cue values
were reversed. The dashed curves show the mirror images of data
collected on day 1 (for POSN and TRANSL), which are the

predictions for the reversed-cue conditions, if earlier sessions have
no influence on later sessions. The data clearly deviate from these
curves and are consistent with unlearning what was learned in the
earlier sessions, rather than starting fresh. Thus, the learning was
long lasting (see also Fig. 4).

Fig. 3 plots, for each individual trainee, the percentage of trials
for which perceived rotation was in the right-handed direction on
day 1 of the experiment. Data from the three experiments are
shown on separate axes. The effect of training was remarkably
consistent across trainees: it was in the predicted direction (con-
sistent with classical conditioning) for all trainees in the POSN and
TRANSL experiments; in the SOUND experiment, no trainee
showed a significant effect at the 0.05 level, and the mean effect
across observers was close to zero (mean � SE, 1.4 � 4.1%).

Fig. 4 shows, for each individual trainee, the effect of training
across days for the POSN and TRANSL experiments. These data
plot the percentage of trials in which the rotation direction agreed
with the new signal, according to its contingency on that day of the
experiment. The contingency of the new signal was reversed on the
last day of the experiment (day 2 in the POSN experiment and day
3 in the TRANSL experiment). The data show that, on the last day,
training failed to completely reverse the learning from previous
days. Trainees thus behaved very differently on the last day com-
pared with the first day, as a consequence of their previous training.
This difference demonstrates that the learning was long-lasting (as
would be expected for classical conditioning).

Trainees were interviewed after the experiment. Interestingly,
more than half of the trainees did not notice that there was a
correlation between the new signal and the cube’s rotation direc-
tion, and most of the other trainees were unable to say exactly what
the correlation was and did not know it had switched on their last
session in the POSN and TRANSL experiments. One trainee was
able to describe the correlation. He claimed that he nevertheless
based his responses on perceived rotation (and not on an explicit
rule about how to use the signal). We conclude that the trainees’
visual systems learned the contingency whether or not the trainee
was aware of it.

Discussion
Why did cue recruitment occur in the POSN and TRANSL
experiments, when historically it has been elusive? First, of course,

Fig. 2. Time course of learning in three experiments. The experiments
measured learning for three cues: POSN (position cue), TRANSL (translation
cue), and SOUND (sound cue). Each data point is based on seven to eight test
trials per trainee (62–64 judgments per data point). Error bars are 67%
confidence intervals for binomially distributed data. Data were included only
for those trainees who completed all sessions of their experiment (eight
different trainees per experiment). Cue contingency was reversed on day 2 in
the POSN experiment (POSN-REV) and on day 3 in the TRANSL experiment
(TRANSL-REV). The dashed curves replot the data from day 1 of the POSN and
TRANSL experiments, reflected about the 50% line. New trainees, if run in the
POSN-REV and TRANSL-REV conditions, would be expected to produce data
along these dashed curves.

Fig. 3. Effect of training on day 1. The percentage of
test trials judged to have right-handed rotation is
shown for the three experiments (POSN, TRANSL, and
SOUND) and lasted 2, 3, and 1 day(s), respectively; only
day 1 is shown in this figure. Different trainees were
used for each experiment. Trainees in each experiment
were divided into two groups that received exposure
to opposite signal contingency (on either side of the
vertical dashed line in the middle of the graph). For
POSN, right-hand rotation (RHR) was paired with
placement of the rotating cube in the top or bottom of
the display. For TRANSL, RHR was paired with upward
or downward translation of the cube. For SOUND, RHR
was paired with a high- or low-pitched tone sequence.
The height difference between the solid and hatched
bars indicates the biasing effect caused by training.
The significance of this difference is expressed as a P
value for a �2 test, shown above each trainee’s data.
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it is possible that these signals are special. Additional experiments
are clearly needed to measure cue recruitment for a variety of
additional signals and perceptual attributes to determine the gen-
erality of these findings.

Second, whether the chosen signals are special or not, if the total
amount of learning in a cue recruitment experiment is small (i.e.,
if training provides only a small cue-contingent bias in appearance),
then a sensitive measure of learning is needed. It was for this reason,
following the logic of Wallach and Austin (15), that we used a
perceptually bistable stimulus to demonstrate changes in appear-
ance. For such a stimulus, the learning needed only to bias the
percept by an amount that was large relative to whatever factors
normally resolve the competition between the two perceived forms.

Third, contingent adaptation aftereffects (CAA) are ubiquitous
phenomena in visual experiments (24–27). In our experiments,
training stimuli contained motion that was correlated with binoc-
ular disparity. In this situation, a CAA would be expected to bias
the appearance of binocular zero-disparity stimuli in a direction
opposite to the effect of cue recruitment. We avoided this potential
problem by using monocular stimuli for which the disparity was
underlined rather than binocular stimuli with zero disparity. In
other words, test stimuli were ambiguous because binocular dis-
parity was undefined, rather than because disparities were set to
zero as in previous experiments (28, 29). Nawrot and Blake (28)
have shown that this stereomotion CAA can also be eliminated by
training with stimuli in which rotation direction is specified by
pictorial cues (such as occlusion) alone. However, we were unable
to take this approach because perceived rotation on training trials
was not always forced in the correct direction when we used only
occlusion as the depth cue.

In principle, removal of the preexisting depth cues from the test
stimuli could also help because their presence, even if their values
were such that they did not bias perception, would be expected to
reduce the relative effectiveness of a newly learned cue as a
consequence of weighted averaging with those cues (30). Reducing
the number of cues reduces the number of factors involved in

constructing the percept, thereby increasing the weight given to the
new cue.

What actually changed in the nervous system to allow the new cue
to bias the percept? It is often quite challenging to determine which
internal variables are associated during learning to account for a
change in responses to stimuli (31). However, in our experiment, a
direct association between the new cue and either stereo or
occlusion can be ruled out. The role of these preexisting cues was
to disambiguate the wire-frame cube, but perceived rotation direc-
tion also depended on whether the near part of the cube moved left
or right. Thus, training the observer with static stereo and occlusion
cues would not have led to bias in perceived rotation direction in our
experiment, because there would be no physical difference between
the two types of training stimulus. Thus, training must have affected
perceived rotation direction in some other way, such as eliciting
activity in neurons that represent both disparity and motion or
directly modifying a higher-level neural representation of rotation
in depth. In the case of the POSN cue, a promising start would be
to separately measure learning that depends on retinal position and
learning that depends on position in the world, as these two signals
were confounded in the present study.

Why did the learning rates differ for the three different signals
we used? Learning rates in our experiment were presumably under
the control of the system, because all of the relevant signals were
suprathreshold. Our working hypothesis is that the system will learn
rapidly or slowly, according to its (implicit) internal belief as to
whether learning is appropriate in the given situation. Differences
in learning rates have been found in other domains. For example,
rats learn to associate illness with flavors more easily than with
lights or sounds (ref. 32; see also refs. 33 and 34). Failure to learn
the sound cue in our experiment may reflect a similar predisposition
to not learn certain correlations. The sounds we used may have
been judged by the system as not plausibly bearing on the cube’s
rotation direction, perhaps because the auditory and visual stimuli
did not have simultaneous onsets. Simultaneous sounds can bias
visual percepts (35, 36), and for perception, cues that are mutually
relevant normally would be measured by the system at the same
time, so learning mechanisms should exploit this fact.

The results are notable for lasting into the next day (in fact,
during pilot experiments, two of the authors could not be easily
retrained even after several weeks). The long-lasting nature of these
effects distinguishes them from most negative adaptation afteref-
fects (which are short-lived). An exception, however, is the McCol-
lough effect (37), a negative adaptation aftereffect that can last
many days. The McCollough effect has also been described in
instances of associative learning (38). To induce the McCollough
effect, two images are viewed in alternation for several minutes:
vertical black-and-red stripes alternate every few seconds with
horizontal black-and-green stripes. After this training period, ver-
tical black-and-white stripes look black-and-greenish, and horizon-
tal black-and-white stripes look black-and-pink.

Learning in the McCollough effect appears to be limited to
specific signals such as orientation and spatial frequency that are
known stimulus features for early visual coding (39, 40). Negative
adaptation aftereffects are expected for processes of recalibration:
in this case, the system sticks to its original belief that color and
orientation in the world are uncorrelated (41–43) and modifies
itself in the direction that would serve, under that assumption, to
eliminate bias. If so, the McCollough effect is long-lasting because
the training stimuli are treated by the system as strong evidence of
the need for recalibration; after this recalibration occurs, it could
take a long time for recalibration by natural stimuli to remove the
last traces of bias induced by the training stimuli.

More generally, the visual system has two functionally distinct
problems: keeping itself calibrated and tracking the meanings of
signals from the world (e.g., cue recruitment). Persistent expo-
sure to stimuli with signals in novel correlations should be
expected to elicit adaptations in both of these functions. We

Fig. 4. Persistence of learning into the next day. The data plotted are the
percentage of trials on which the perceived rotation direction agreed with the
new signal, according to its contingency that day. Each pair (Upper) or triplet
(Lower) of bars represents data from one trainee. A bar height �50% means
the cue was effective in the predicted direction. If trainees started each day in
the same state, bar heights would be the same on all days for a given trainee,
which was not the case. Instead, continued training on day 2 (TRANSL) resulted
in additional bias, and reversed training on day 2 (POSN) or day 3 (TRANSL)
resulted in less bias (in the new predicted direction) as compared with that
seen on day 1. T tests for the between-day differences (across trainees) were
as follows: (i) for POSN, H0 (null hypothesis): day 1 � day 2 was rejected at P �
0.001; (ii) for TRANSL, H0: day 1 � day 2 was rejected at P � 0.05; and (iii) for
TRANSL, H0: day 2 � day 3 was rejected at P � 0.001. Only those trainees who
completed all sessions of their experiment are shown.
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would associate negative aftereffects with recalibration and
positive aftereffects with changes in signal utilization. Many
instances of recalibration are known; is there any evidence of the
latter, excepting the experiments we report here? A number of
other phenomena are closely related to cue recruitment in that
they directly demonstrate a positively correlated change in
appearance, as a result of learned associations under laboratory
control. These phenomena include the following:

Y Likely previous instances of cue recruitment. Fieandt (3, 11) used
classical conditioning to change the perceived color (albedo) of
a surface, as measured in a matching task: at first the surface
appeared to be well lit and painted dark, but through experience
it came to appear in a shadow and painted light. Fieandt also
reported that a new visual cue (a button) and a new sound cue
(a bell) were both somewhat effective in modulating how the
stimulus was perceived. These early studies reported that learned
contextual cues under experimental control could bias appear-
ance. Howells (44) reported that a tone became effective at
biasing perceived color, as measured in matching experiments.

Y Changes in cue weights. If two visual cues are in conflict and
tactile information consistently agrees with one of them during
training, then that visual cue will be given greater weight (45, 46).
Note that no new cues are recruited in this case.

Y Modulation of cue weights. A third visual cue (or ‘‘context’’) can
be recruited to modulate the weights of the two conflicting visual
cues, and some third cues are learned faster than others (47). This
modulation demonstrates recruitment of an ‘‘auxiliary cue’’ (30).

Y Changes in the assumptions used to interpret sense data.
Experience with a visual scene can systematically bias how
shading cues are used to infer the shapes of new 3D objects in
the scene (48).

Y 3D interpretations of images. A given 2D image can be made to
evoke two or more 3D interpretations, as a result of repeated
association between the image and information that specifies the
3D object (12, 13). This effect is clearly associative learning. It
differs from cue recruitment in that the laws that relate 3D shapes
to their 2D projections are largely known by the visual system
before the experiment and because no new signal acquired the
ability to control the percept (became a cue) on a trial-by-trial
basis. It would be interesting to train on both of two 3D shapes,
contingent on some third signal (such as color); we would expect
the new signal to become a cue that controls, on a trial-by-trial
basis, which of two 3D shapes is seen.

Y Disambiguation of a bistable percept of object identity. Presen-
tation position can bias the perceived identity of an ambiguous
figure after association between position and unambiguous (but
configurally similar) figures (15). We interpret this result as cue
recruitment. The authors did not determine whether the learning
was long lasting.

Y Conditioned afterimages. It has been reported that visual expe-
riences (in the absence of visual input) can be elicited as
conditioned responses to tones after pairing images with tones
(49). This finding would demonstrate a conditioned visual re-
sponse but not one that occurs during normal vision.

These findings, together with our own, suggest that appearance
can be modified by experience, and indeed that perception is stable
not because the visual system is stable, but because it continually
adapts itself to a world that is stable. Associative learning appears
to be a mechanism by which it does so. Associative learning is
significant for a wide range of human responses, including motor
behaviors, glandular secretions and other physiological responses,
emotional responses, verbal learning, category learning, judgments
of event-relatedness, reasoning, and a variety of effects in social
psychology (38, 50). Historically, one of the first uses of associative
learning as a concept was to explain perception (4). Why then was
it given relatively little attention in the past 50 years?

The failure to find classical conditioning of perceptual responses
during the 1950s was interpreted as indicative of the perceptual
system’s high degree of sophistication: It was concluded that
classical conditioning did not affect perception because simple
stimulus-to-response mappings do not give an appropriate descrip-
tion of the perception (51). However, the view that classical
conditioning is implemented by a direct mapping from stimuli to
responses has since been rejected in favor of the view that learning
in classical conditioning represents change in the organism’s rep-
resentation of contingency (52).

Gibson (53) defined ‘‘perceptual learning’’ as follows:

Any relatively permanent and consistent change in the
perception of a stimulus array after practice or experience
with this array will be considered perceptual learning.

This definition matches the generic meaning of the words percep-
tual learning. However, in the absence of positive experimental
findings (51), many researchers assumed that perceptual learning
did not include associative learning. In 1955, there was no straight-
forward way to challenge Gibson and Gibson (54) when they denied
that changes in the utilization of suprathreshold signals, as took
place in our experiments, might have importance for perception.¶
Since then, many researchers have defined perceptual learning in
terms of discrimination performance (55–59), which excludes any
effects of associative learning on appearance. A recent textbook on
perceptual learning (60) states:

Contrary to associative learning, perceptual learning does
not bind together two processes that were separated but
improves discrimination between stimuli that could not be
discriminated before the learning.

Current textbooks on perception certainly discuss appearance, but
they make no reference to associative learning.

Brunswik’s (3) theory, which includes conditioned learning of the
ecological validities of cues, has found wide application in the field
of judgment and decision making (61), and other aspects of his
theory are starting to find use in perception and computer vision
(62–64). Many others in the modern literature, besides Brunswik,
have argued that associative learning must play a role in perception.
Hebb (9) argued explicitly for such a role and developed ideas for
implementing it neurally. Barlow (25) noted the ‘‘astonishingly deep
knowledge of the normal patterns of associated activation our visual
system possesses and automatically uses,’’ and argued that percep-
tual learning must include mechanisms for detecting statistical
regularities in the visual environment (see also ref. 65). Indeed, it
is difficult to see how one’s visual system could learn this statistical
structure without the ability to detect novel correlations among
signal measurements. Wallach (66) proposed that the calibration of
perceptual estimators occurs through association. Purves and col-
leagues have documented many instances in which the magnitude
of a perceptual illusion is well correlated with a statistic in natural
scenes, which strongly suggests a role for associative learning in the
construction of appearance (67). Baron (68) and Fiser and Aslin
(69–71) described several instances of learned associations between
visually presented signals that improved recognition performance,
although it is not possible to determine whether these improve-
ments were mediated by changes in appearance. Wallis and
Bülthoff (72) reviewed a variety of evidence in favor of associative
learning in object recognition, and Geisler and Diehl (73) discussed
the evolution of facultative adaptations for perception, i.e., mech-

¶Gibson and Gibson (54) suggested that, ‘‘Perceptual learning, then, consists of responding
to variables of physical stimulation not previously responded to.’’ And later, ‘‘True
perceptual learning experiments are limited to those concerned with discrimination,’’
(meaning that the only controlled perceptual learning experiments to date were discrim-
ination experiments).
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anisms that allow the organism to adapt appropriately to the
statistics of its environment during its lifetime.

A useful distinction between cue recruitment and learning to
discriminate may be the limiting factor on the learning rate. For cue
recruitment, the rate at which an organism learns to use a signal as
a new cue must necessarily reflect the organism’s implicit or explicit
belief about whether current observations of correlation have
predictive value about what the signal will mean in the future. It is
hard to see why learning to discriminate would be limited by this
factor, given that the cost of learning is presumably much smaller
than the gains to be had from improved performance. More likely,
learning to discriminate proceeds at the fastest rate possible and is
limited by the system’s ability to create a better template (to extract
a feature through proper combination of many relevant sensors, so
as to achieve a better signal-to-noise ratio). Detection is not a
limiting factor in cue recruitment because the new signal is already
suprathreshold: Learning can occur within very few trials, if the
system so chooses.

A second useful distinction may be that cue recruitment entails
a change in the utilization of visual signals, without any necessary
increase in the number of percepts the organism is capable of
constructing. This difference is easiest to see when a small set of
stimuli is either differentiated, giving rise to more percepts (as when
developing an appreciation for wine), or else simply remapped, so
that a given stimulus comes to look like something else (as with our
rotating cubes).

Cue recruitment and learning to discriminate might interact in
interesting ways. In some cases, learning to discriminate is greatly
facilitated by brief practice with easy stimuli (74, 75), and subjective
reports are that the practice causes previously indiscriminable
stimuli to look different (74). These observations lead one to
suspect that some internally represented cue became associated

with a perceptual attribute during viewing of the easy stimuli, which
generalized to the more difficult stimuli.

Our experiments confirmed two cases of cue recruitment for
which the learning rate was nonzero. When combined with previous
theoretical and experimental work, our results provide strong
evidence for associative learning in the processes that construct
percepts. It remains to be seen just how widely such learning can be
shown to occur; the current work provides only a start. Some
interesting implications are that learning in perceptual mechanisms
can now be studied in isolation, independent of other learning that
might also occur at other stages during visually guided behavior,
and that intelligent computer vision systems may have to be
equipped with mechanisms for learning new associations between
signals.

In summary, cue recruitment experiments provide an additional
tool for studying perceptual appearance, by measuring the rate of
learning at which an arbitrarily chosen signal comes to control an
arbitrarily chosen perceptual attribute. Until many such rates have
been measured and a pattern of results established, the presump-
tion should probably return to what it was 50 years ago: That
associative learning [what Bishop Berkeley (4) called the ‘‘habitual
or customary connexion between two sorts of ideas’’] is of ongoing
importance for perception, even in adults.

We thank Jonathan Baron, David Brainard, Jacob Nachmias,
Larry Palmer, Virginia Richards, Martin Seligman, and other readers
from the University of Pennsylvania for their comments on drafts of this
manuscript. We thank Clark Ohnesorge for bringing the work of
Egon Brunswik to our attention, Marianne Promberger for helping us
read von Fieandt (1936), and Richard Pater for discussion and com-
ments. This work was supported by National Institutes of Health Grants
R01-EY013988 and P30-EY001583 and by the University Research
Foundation at the University of Pennsylvania.

1. von Helmholtz, H. (1910) Handbuch der Physiologischen Optik, trans. Optical Society of
America (1925) The Perceptions of Vision, Treatise on Physiological Optics (Optical Society
of America, New York), Vol. 3 (German).

2. Gibson, J. J. (1979) The Ecological Approach to Visual Perception (Houghton Mifflin, Boston).
3. Brunswik, E. (1956) Perception and the Representative Design of Psychological Experiments

(Univ. of California Press, Berkeley), pp. 92, 96, 123–131.
4. Berkeley, G. (1709) An Essay Towards a New Theory of Vision (Dublin), 1st Ed.
5. Condillac, E. B. A. d. (1754) Treatise on Sensations, trans. Philip, F. (1982) A Treatise on

Systems, A Treatise on Sensations, Philosophical Works of Etienne Bonnot, Abbe de
Condillac (Erlbaum, Hillsdale, NJ), Vol. 1.

6. Kant, I. (1781) Critique of Pure Reason; trans. Meiklejohn, J. M. D. (1990) in Critique of Pure
Reason, Philosophical Classics (Dover, New York).

7. von Helmholtz, H. (1878) The Facts of Perception; reprinted (1971) in Selected Writings of
Hermann Helmholtz, ed. Kahl, R. (Wesleyan Univ. Press, Middletown, CT).

8. James, W. (1890) The Principles of Psychology; reprinted (1983) (Harvard Univ. Press,
Cambridge, MA), pp. 722–912.

9. Hebb, D. O. (1949) Organization of Behavior (Wiley, New York).
10. Ames, A. J. (1953) in Vision and Action, ed. Ratner, S. (Rutgers Univ. Press, New Brunswick,

NJ), pp. 251–274.
11. von Fieandt, K. (1936) Archiv für die Gesamte Psychologie 96, 467–495.
12. Wallach, H., O’Connell, D. N. & Neisser, U. (1953) J. Exp. Psychol. 45, 360–368.
13. Sinha, P. & Poggio, T. (1996) Nature 384, 460–463.
14. Epstein, W. (1965) Am. J. Psychol. 78, 120–123.
15. Wallach, H. & Austin, P. (1954) Am. J. Psychol. 67, 338–340.
16. Simmons, K. (1993) Early Visual Development: Normal and Abnormal (Oxford Univ. Press,

New York).
17. Kersten, D., Mamassian, P. & Yuille, A. (2004) Annu. Rev. Psychol. 55, 271–304.
18. Knill, D. C. & Richards, W. (1996) Perception as Bayesian Inference (Cambridge Univ. Press,

Cambridge, U.K.).
19. Pavlov, I. P. (1927) Conditioned Reflexes (Oxford Univ. Press, Oxford).
20. Rescorla, R. A. (2003) Span. J. Psychol. 6, 185–195.
21. Smedslund, J. (1955) Multiple Probability Learning (Oslo Univ. Press, Oslo).
22. Mulligan, J. B. (1986) Perception 15, 27–36.
23. Gallistel, C. R., Fairhurst, S. & Balsam, P. (2004) Proc. Natl. Acad. Sci. USA 101, 13124–13131.
24. Mayhew, J. E. & Anstis, S. M. (1972) Percept. Psychophys. 12, 77–85.
25. Barlow, H. (1990) Vision Res. 30, 1561–1571.
26. Durgin, F. H. & Proffitt, D. R. (1996) Spat. Vis. 9, 423–474.
27. Blaser, E. & Domini, F. (2002) Vision Res. 42, 273–279.
28. Nawrot, M. & Blake, R. (1991) Percept. Psychophys. 49, 230–244.
29. Bradley, D. C., Chang, G. C. & Andersen, R. A. (1998) Nature 392, 714–717.
30. Landy, M. S., Maloney, L. T., Johnston, E. B. & Young, M. (1995) Vision Res. 35, 389–412.
31. Rescorla, R. A. (1980) Pavlovian Second-Order Conditioning: Studies in Associative Learning

(Erlbaum, Hillsdale, NJ).
32. Garcia, J. & Koelling, R. A. (1966) Psychon. Sci. 4, 123–124.
33. Wilcoxon, H. C., Dragoin, W. B. & Kral, P. A. (1971) Science 171, 826–828.
34. Seligman, M. E. P. (1970) Psychol. Rev. 77, 406–418.
35. Sekuler, R., Sekuler, A. B. & Lau, R. (1997) Nature 385, 308 (lett.).

36. Ecker, A. J. & Heller, L. M. (2005) Perception 34, 59–75.
37. McCollough, C. (1965) Science 149, 1115–1116.
38. Siegel, S. & Allan, L. G. (1996) Psychon. Bull. Rev. 3, 314–321.
39. Sigel, C. & Nachmias, J. (1975) Vision Res. 15, 829–836.
40. Allan, L. G., Siegel, S., Kulatunga-Moruzi, C., Eissenberg, T. & Chapman, C. A. (1997)

Percept. Psychophys. 59, 1327–1334.
41. Dodwell, P. C. & Humphrey, G. K. (1990) Psychol. Rev. 97, 78–89.
42. Allan, L. G. & Siegel, S. (1993) Psychol. Rev. 100, 342–346; discussion 347–350.
43. Bedford, F. L. (1995) Cognition 54, 253–297.
44. Howells, T. H. (1944) J. Exp. Psychol. 34, 87–103.
45. Ernst, M. O., Banks, M. S. & Bülthoff, H. H. (2000) Nat. Neurosci. 3, 69–73.
46. Atkins, J. E., Fiser, J. & Jacobs, R. A. (2001) Vision Res. 41, 449–461.
47. Jacobs, R. A. & Fine, I. (1999) Vision Res. 39, 4062–4075.
48. Adams, W. J., Graf, E. W. & Ernst, M. O. (2004) Nat. Neurosci. 7, 1057–1058.
49. Davies, P., Davies, G. L. & Bennett, S. (1982) Perception 11, 663–669.
50. Lieberman, D. A. (2000) Learning: Behavior and Cognition (Wadsworth, Stamford, CT), 3rd Ed.
51. Drever, J. (1960) Annu. Rev. Psychol. 11, 131–160.
52. Rescorla, R. A. (1988) Am. Psychol. 43, 151–160.
53. Gibson, E. J. (1963) Annu. Rev. Psychol. 14, 29–56.
54. Gibson, J. J. & Gibson, E. J. (1955) Psychol. Rev. 62, 32–41.
55. Sagi, D. & Tanne, D. (1994) Curr. Opin. Neurobiol. 4, 195–199.
56. Fahle, M. & Morgan, M. (1996) Curr. Biol. 6, 292–297.
57. Dosher, B. A. & Lu, Z. L. (1999) Vision Res. 39, 3197–3221.
58. Gibson, E. J. & Pick, A. D. (2000) An Ecological Approach to Perceptual Learning and

Development (Oxford Univ. Press, New York).
59. Fine, I. & Jacobs, R. A. (2002) J. Vis. 2, 190–203.
60. Fahle, M. (2002) in Perceptual Learning, eds. Fahle, M. & Poggio, T. (MIT Press, Cambridge,

MA), pp. ix–xii.
61. Hammond, K. R. & Stewart, T. R. (2001) The Essential Brunswik (Oxford Univ. Press, New

York).
62. Martin, D., Fowlkes, C., Tal, D. & Malik, J. (2001) Proc. Int. Conf. Comput. Vis. 2, 416–423.
63. Elder, J. H. & Goldberg, R. M. (2002) J. Vis. 2, 324–353.
64. Geisler, W. S. & Kersten, D. (2002) Nat. Neurosci. 5, 508–510.
65. Barlow, H. (2001) Behav. Brain Sci. 24, 602–607; discussion 652–671.
66. Wallach, H. (1985) Am. Psychol. 40, 399–404.
67. Purves, D. & Lotto, R. B. (2003) Why We See What We Do: An Emperical Theory of Vision

(Sinauer, Sunderland, MA).
68. Baron, J. (1974) Can. J. Psychol. 28, 37–50.
69. Fiser, J. & Aslin, R. N. (2001) Psychol. Sci. 12, 499–504.
70. Fiser, J. & Aslin, R. N. (2002) J. Exp. Psychol. Learn. Mem. Cognit. 28, 458–467.
71. Fiser, J. & Aslin, R. N. (2002) Proc. Natl. Acad. Sci. USA 99, 15822–15826.
72. Wallis, G. & Bülthoff, H. (2002) in Perceptual Learning, eds. Fahle, M. & Poggio, T. (MIT

Press, Cambridge, MA), pp. 299–315.
73. Geisler, W. S. & Diehl, R. L. (2002) Philos. Trans. R. Soc. London B 357, 419–448.
74. Rubin, N., Nakayama, K. & Shapley, R. (1997) Curr. Biol. 7, 461–467.
75. Ahissar, M. & Hochstein, S. (2004) Trends Cogn. Sci. 8, 457–464.

488 � www.pnas.org�cgi�doi�10.1073�pnas.0506728103 Haijiang et al.


